Speech recognition with a generative factor analyzed hidden Markov model

نویسندگان

  • Kaisheng Yao
  • Kuldip K. Paliwal
  • Te-Won Lee
چکیده

We present a generative factor analyzed hidden Markov model (GFA-HMM) for automatic speech recognition. In a traditional HMM, the observation vectors are represented by mixture of Gaussians (MoG) that are dependent on discrete-valued hidden state sequence. The GFA-HMM introduces a hierarchy of continuousvalued latent representation of observation vectors, where latent vectors in one level are acoustic-unit dependent and the latent vectors in a higher level are acoustic-unit independent. An expectation maximization (EM) algorithm is derived for maximum likelihood parameter estimation of the model. The GFA-HMM can achieve a much more compact representation of the intra-frame statistics of observation vectors than traditional HMM. We conducted an experiment to show that the GFA-HMM can achieve better performances over traditional HMM with the same amount of training data but much smaller number of model parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative factor analyzed HMM for automatic speech recognition

We present a generative factor analyzed hidden Markov model (GFA-HMM) for automatic speech recognition. In a standard HMM, observation vectors are represented by mixture of Gaussians (MoG) that are dependent on discretevalued hidden state sequence. The GFA-HMM introduces a hierarchy of continuous-valued latent representation of observation vectors, where latent vectors in one level are acoustic...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Speech Recognition Using Hidden Markov Model

Hidden Markov Models (HMMs) are widely used in pattern recognition applications, most notably speech recognition. Speech samples are recorded using a wave surfer tool. Wave surfer is a simple but powerful interface. The sound can be visualized and analyzed in several ways with the help of this tool. The recorded signal (test data) is compared with the original signal (trained data) using Hidden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003